Mars Yard
Kitts has even bolder plans for the technology center: he aims to create a landscape there that looks like Mars-a “Mars Yard.” It will resemble the surface of Mars and allow students, children, and the public to remotely drive rovers similar to those on the red planet today. Kitts is putting the final pieces of funding together now, hoping that some of next fall’s seniors can develop it for their senior design project. The yard, which will also be used extensively for research studies, will be in a parking lot next to the STC.
The Mars Yard should prove to be a popular site for local school children, who already visit the Robotics Systems Lab at SCU. For those who can’t make it to the yard, a web site will offer a chance to control the rovers.
SCU in space
SCU’s space program, as it were, began in 1998 with the construction of a satellite called Barnacle. Government regulations on international cooperation involving spacecraft prevented Barnacle from launching into orbit, but the project set the stage for future successes. In 1999 came Artemis, a collection of three small satellites built by a seven-member team of female engineering students. The satellites were launched from Vandenberg Air Force Base in Central California in January 2000.
And the program has literally taken off from there. The Robotics Systems Lab has contracts with such federal agencies as NASA and the National Oceanic and Atmospheric Administration to build robots and conduct research. Other universities, including Stanford, MIT, Washington University of St. Louis, and the University of Texas, have hired SCU to build components for their space satellites.
This spring, SCU senior Jennifer Lundquist is part of a four-woman senior design team building a satellite that will be part of a larger satellite being built by Washington University. “Our team is dealing with the communication between two transceivers [a transmitter] on the main satellite and one on [ours],” she explains. “Another SCU group is working on the communications between the ground and the main satellite.”
Students say they enjoy building the projects after years of soaking up theories in class. “This was way more intriguing and sophisticated because it was hands on,” says Rob Watson ’03, who worked on a microsatellite project.
Students also get the opportunity to work with students from different realms of engineering. In Lundquist’s group, for example, her colleagues are from mechanical and electrical engineering. Other projects have included students majoring in computer engineering.
“They learn the vocabulary of other engineers in a different discipline, how to interact with them and work in a team, how to do their own management as a team,” Kitts says.