It sounds, frankly, a little too utopian. A medical system that, rather than taking the typical one-size-fits-all approach, considers your uniqueness in pursuing treatment, from the environment you live in to your very genes. The patient’s body learns to help itself in treating disease, says Joy Ku ’23, a researcher in the lab of Associate Professor Bill Lu in the Department of Bioengineering. Precision medicine. It’s the buzzword du jour, and Ku is helping make it a reality.
Through their research on nanoparticles, Ku and lab partner Renceh Flojo ’23 designed software to develop nanovaccines to make immunization more precise.
“We wanted to take unnecessary parts that might be detrimental to the body and create negative side effects to improve the safety and potential benefits,” Flojo says. In the case of COVID, their software parses through the full length of the coronavirus spike protein (yes, it’s what you’re picturing) and identifies the most likely spots the immune system will target. “Then using these specific parts, we can create this Frankenstein protein,” he says.
Rather than the current mRNA vaccines that work by teaching your body to make the protein that triggers an immune response when a virus enters, their nanovaccine is coded to only make the most important parts of the protein. “This can help counter some of the negative effects you get with the COVID vaccines currently on the market,” says Ku, referring to often reported side effects like headache, chills, nausea, and fever. “It’s the three core tenets of our project: precision, efficacy and safety.”
Excitingly, Ku says, the software they designed isn’t tailored specifically for COVID. “We’ve been able to test it out on cancer antigens. There’s a whole field now looking into cancer vaccines where basically you’re utilizing your own body’s immune system to identify and destroy rogue cancer cells,” she says.
Currently, they’re working with a vendor to begin testing on mice. And they’ve filed to patent their software, a huge deal for a pair of undergraduates. “Since we’re a small school, you’re afforded a professor’s entire attention,” Flojo says. “They’re willing to train you, and foster your scientific inquiry. [We’re allowed] to throw darts on a board and actually try things.”