Steven Boyd Saum
14 Oct 2012
It’s just after 10 p.m. Pacific Time on Aug. 5, 2012, and the moment of truth for Curiosity—or, as it’s better known, the Seven Minutes of Terror—is about to arrive. It’s been about eight months since NASA launched the Mars-bound craft—the biggest, most complex robot the agency has tried to land on another planet.
Curiosity enters the atmosphere at 13,200 mph and things start to heat up. The craft’s shape helps slow descent to Mach 2. But that means for two and a half minutes, friction brings the temperature on the heat shield to 2,100 degrees Celsius—past the melting point of titanium.
After catastrophic failure of the heat shield material, Beck asked, “How could we fly with this material?”
Back on Earth, millions are watching. Among the scores of engineers waiting anxiously at the Jet Propulsion Laboratory in Pasadena is Robin Beck ’77. She’s cognizant engineer for the Mars Science Laboratory thermal protection systems—the one in charge of making sure Curiosity doesn’t burn up during entry, and the one who’ll be answering questions if it does.
Tonight, every signal that pings back from Mars brings good news. But when Beck was brought onto the project in 2007, the heat shield news wasn’t good at all.
CATASTROPHIC FAILURE
The original plan was for Curiosity to fly what’s flown on every craft NASA has sent to Mars since the 1970s: a honeycomb-structure filled with an ablator—a heat-resistant, glass-filled material—called SLA-561V. But the size and mass of the Curiosity posed challenges: The shield had to be nearly 15 feet across; and the craft was too heavy for drag alone to slow its descent significantly in the low-density atmosphere of Mars. Plus, flying in at an angle would create turbulent flow—resulting in high heating and shear forces pushing on the leeside surface.
Even so, the initial high-temperature arc jet tests on SLA-561V went fine. As in the past, when the ablator was subjected to these tests, a melt layer formed on the surface and remained in place. But when the material was tested in combined high temperature and high shear, the glassy material flowed along the surface, and gouging of the material resulted. That was a problem. At this point, Beck was brought in—with the understanding that these concerns needed to be addressed now.
The team pushed testing to further extremes, turning up the shear forces but keeping them within flight parameters. The (very surprising) result: catastrophic failure of the material—way beyond melt and flow. Basically, it disappeared from the honeycomb. “The filler was gone in three seconds,” Beck says.
Additional tests resulted in continued unpredictable catastrophic failure. Beck asked: “How could we fly with this material?”
The craft could fly with it if the flight plan were changed dramatically to include a much shallower angle of entry. But that wasn’t an option; a long, slow entry would compromise communications with the vehicle. So there they were, in October 2007—less than two years away from scheduled launch—without a shield. Which meant they had 18 months to develop, design, test, qualify, manufacture, and assemble something that worked.